Understanding the power and limitations of quantum access to data in machine learning tasks is primordial to assess the potential of quantum computing in artificial intelligence. Previous works have already shown that speed-ups in learning are possible when given quantum access to reinforcement learning environments. Yet, the applicability of quantum algorithms in this setting remains very limited, notably in environments with large state and action spaces. In this work, we design quantum algorithms to train state-of-the-art reinforcement learning policies by exploiting quantum interactions with an environment. However, these algorithms only offer full quadratic speed-ups in sample complexity over their classical analogs when the trained policies satisfy some regularity conditions. Interestingly, we find that reinforcement learning policies derived from parametrized quantum circuits are well-behaved with respect to these conditions, which showcases the benefit of a fully-quantum reinforcement learning framework.
translated by 谷歌翻译
近年来,变异量子算法(例如量子近似优化算法(QAOA))越来越受欢迎,因为它们提供了使用NISQ设备来解决硬组合优化问题的希望。但是,众所周知,在低深度,QAOA的某些位置限制限制了其性能。为了超越这些局限性,提出了QAOA的非本地变体,即递归QAOA(RQAOA),以提高近似溶液的质量。 RQAOA的研究比QAOA的研究较少,例如,对于哪种情况,它可能无法提供高质量的解决方案。但是,由于我们正在解决$ \ mathsf {np} $ - 硬问题(特别是Ising旋转模型),因此预计RQAOA确实会失败,这提出了设计更好的组合优化量子算法的问题。本着这种精神,我们识别和分析了RQAOA失败的情况,并基于此,提出了增强的学习增强的RQAOA变体(RL-RQAOA),从而改善了RQAOA。我们表明,RL-RQAOA的性能改善了RQAOA:RL-RQAOA在这些识别的实例中,RQAOA表现不佳,并且在RQAOA几乎是最佳的情况下也表现出色。我们的工作体现了增强学习与量子(启发)优化之间的潜在有益的协同作用,这是针对硬性问题的新的,甚至更好的启发式方法。
translated by 谷歌翻译
我们提出了第一近最优量子算法,用于估计欧几里德的规范,与有限均值和协方差的矢量值随机变量的平均值。我们的结果旨在将多元子高斯估计的理论延伸到量子设置。与经典上不同,如果任何单变量估计器都可以在维度中最多的对数开销转换为多变量估计器,则不会在量子设置中证明类似的结果。实际上,当样品复杂性小于尺寸时,Heinrich排除了平均估计问题的量子优势。我们的主要结果是表明,在这种低精度的方案之外,有一个量子估计值优于任何经典估算器。我们的方法比单变量设置大致涉及,大多数量子估计人员依赖于相位估计。我们利用各种额外的算法技术,如幅度放大,伯恩斯坦 - Vazirani算法和量子奇异值转换。我们的分析还使用多元截断统计的浓度不等式。我们以前在文献中出现的两个不同输入模型中的Quantum估算器。第一个提供对随机变量的二进制表示的相干访问,并且它包含经典设置。在第二模型中,随机变量直接编码到量子寄存器的相位中。该模型在许多量子算法中自然出现,但常常具有古典样品通常是无与伦比的。我们将我们的技术调整为这两个设置,我们表明第二种模型严格较弱,以解决平均估计问题。最后,我们描述了我们的算法的几个应用,特别是在测量通勤可观察到的期望值和机器学习领域时。
translated by 谷歌翻译
随着真实世界量子计算的出现,参数化量子计算可以用作量子古典机器学习系统中的假设家庭的想法正在增加牵引力的增加。这种混合系统已经表现出潜力在监督和生成学习中解决现实世界任务,最近的作品已经在特殊的人工任务中建立了他们可提供的优势。然而,在加强学习的情况下,可以说是最具挑战性的,并且学习提升将是极为有价值的,在解决甚至标准的基准测试方面没有成功地取得了成功,也没有在典型算法上表达理论上的学习优势。在这项工作中,我们均达到两者。我们提出了一种使用很少的Qubits的混合量子古典强化学习模型,我们展示了可以有效地培训,以解决若干标准基准环境。此外,我们展示和正式证明,参数化量子电路解决了用于古典模型的棘手的某些学习任务的能力,包括当前最先进的深神经网络,在离散对数问题的广泛的经典硬度下。
translated by 谷歌翻译